

bfa - Builders For attrs

bfa implements the builder pattern [https://en.wikipedia.org/wiki/Builder_pattern] for attrs [https://attrs.readthedocs.io] -decorated
classes.

Why?

Python programmers rarely use the builder pattern because class
initializers can express multiple creation strategies with keyword and
default arguments:

>>> class ComplexCreation(object):
... def __init__(self, value1=None, value2=None, value3=None):
... self.value1 = value1
... self.value2 = value2
... self.value3 = value3
... def __repr__(self):
... fmt = "ComplexCreation(value1={}, value2={}, value3={})"
... return fmt.format(self.value1, self.value2, self.value3)
>>> ComplexCreation(value3=3)
ComplexCreation(value1=None, value2=None, value3=3)
>>> ComplexCreation(value1=1, value3=3)
ComplexCreation(value1=1, value2=None, value3=3)

Languages without these features must use something like the builder
pattern to achieve equally flexiblity.

Some classes, however, don’t work well with Python’s function
signatures and calling convention.

Many Complex Arguments

It’s best to keep the number of arguments to a class initializer small
and simple. But some classes have to model irreducibly complicated
things. X.509 certificates [https://tools.ietf.org/html/rfc5280], for example, contain many
differently-typed fields and support arbitrary extensions. The
cryptography [https://cryptography.io] library encapsulates the combinatoric complexity of
certificate creation within its x509.CertificateBuilder [https://cryptography.io/en/latest/x509/reference/#x-509-certificate-builder]. Each
setter method, like not_valid_before [https://cryptography.io/en/latest/_modules/cryptography/x509/base/#CertificateBuilder.not_valid_before], validates and converts its
argument in isolation, resulting in an interface that’s both clearer
for users and easier to test.

Immutable Classes and Incomplete Data

Immutability eliminates bugs by preventing values from changing
unexpectedly.

Asynchronous network programming eliminates bugs by making concurrency
explicit instead of implicit.

Unfortunately, the two can be hard to mix. A network protocol message
might be best represented by a frozen attrs [https://attrs.readthedocs.io] class because so that
downstream code can’t accidently change any of its values. At the
same time, the data necessary to create that class may not arrive at
the same time. One way to deal with this is to create a temporary
dict to store initializer arguments as they become available:

import attr

@attr.s(frozen=True)
class Message(object):
 key = attr.ib()
 value = attr.ib()
 ttl = attr.ib()
 owner = attr.ib()

class Protocol(object):
 def __init__(self, received):
 self.received = received

 def connectionMade(self):
 self._arguments = {}
 self._keys = []

 def dataReceived(self, data):
 type, value = parse(data)
 if type == Types.STOP:
 message = Message(**self._arguments)
 self.received.callback(message)
 self.transport.loseConnection()
 elif type == Types.KEY:
 self._keys.append(value)
 elif type == Types.VALUE:
 key = self._keys.pop(0)
 self._arguments[key] = value
 elif type == Types.TTL:
 ...

While the downstream code waits on the received Deferred benefits
from Message’s mutability, the parsing code in Protocol does
not, even though it’s liable to be full of details that hide bugs.

How?

bfa works with attrs [https://attrs.readthedocs.io] to make the builder pattern as painless as
it is powerful. Imagine a network protocol Message with even more
fields, so that our program suffers from both issues that make
immutability hard:

import attr

@attr.s(frozen=True)
class Message(object):
 key = attr.ib()
 value = attr.ib()
 ttl = attr.ib()
 owner = attr.ib()
 address = attr.ib()
 kitchen = attr.ib()
 sink = attr.ib()
 ...

The protocol itself can use bfa.builder to incrementally construct a Message:

import bfa

class Protocol(object):
 def __init__(self, received):
 self.received = received

 def connectionMade(self):
 self._builder = bfa.builder(for_class=Message)
 self._keys = []

 def dataReceived(self, data):
 type, value = parse(data)
 if type == Types.STOP:
 message = self._builder.builder()
 self.received.callback(message)
 self.transport.loseConnection()
 elif type == Types.KEY:
 self._keys.append(value)
 elif type == Types.VALUE:
 key = self._keys.pop(0)
 self._builder.key(key)
 elif type == Types.TTL:
 ...

See bfa.builder() for the details.

Where?

bfa is developed on GitHub [https://github.com/markrwilliams/bfa].

Contributors adhere to the project’s Code of Conduct [https://github.com/markrwilliams/bfa/blob/master/CODE_OF_CONDUCT.md].

Contents:

	src
	bfa package

	bfa package
	Module contents

Indices

	Index

	Module Index

	Search Page

src

	bfa package
	Module contents

bfa package

Module contents

bfa package

Module contents

Index

 nav.xhtml

 Table of Contents

 		
 bfa - Builders For attrs

 		
 src

 		
 bfa package

 		
 Module contents

 		
 bfa package

 		
 Module contents

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

