
bfa Documentation
Release

Mark Williams

Feb 25, 2018

Contents:

1 Why? 3
1.1 Many Complex Arguments . 3
1.2 Immutable Classes and Incomplete Data . 3

2 How? 5

3 Where? 7
3.1 src . 7

4 Indices 9

i

ii

bfa Documentation, Release

bfa implements the builder pattern for attrs -decorated classes.

Contents: 1

https://en.wikipedia.org/wiki/Builder_pattern
https://attrs.readthedocs.io

bfa Documentation, Release

2 Contents:

CHAPTER 1

Why?

Python programmers rarely use the builder pattern because class initializers can express multiple creation strategies
with keyword and default arguments:

>>> class ComplexCreation(object):
... def __init__(self, value1=None, value2=None, value3=None):
... self.value1 = value1
... self.value2 = value2
... self.value3 = value3
... def __repr__(self):
... fmt = "ComplexCreation(value1={}, value2={}, value3={})"
... return fmt.format(self.value1, self.value2, self.value3)
>>> ComplexCreation(value3=3)
ComplexCreation(value1=None, value2=None, value3=3)
>>> ComplexCreation(value1=1, value3=3)
ComplexCreation(value1=1, value2=None, value3=3)

Languages without these features must use something like the builder pattern to achieve equally flexiblity.

Some classes, however, don’t work well with Python’s function signatures and calling convention.

1.1 Many Complex Arguments

It’s best to keep the number of arguments to a class initializer small and simple. But some classes have to model
irreducibly complicated things. X.509 certificates, for example, contain many differently-typed fields and support
arbitrary extensions. The cryptography library encapsulates the combinatoric complexity of certificate creation within
its x509.CertificateBuilder. Each setter method, like not_valid_before, validates and converts its argument in isolation,
resulting in an interface that’s both clearer for users and easier to test.

1.2 Immutable Classes and Incomplete Data

Immutability eliminates bugs by preventing values from changing unexpectedly.

3

https://tools.ietf.org/html/rfc5280
https://cryptography.io
https://cryptography.io/en/latest/x509/reference/#x-509-certificate-builder
https://cryptography.io/en/latest/_modules/cryptography/x509/base/#CertificateBuilder.not_valid_before

bfa Documentation, Release

Asynchronous network programming eliminates bugs by making concurrency explicit instead of implicit.

Unfortunately, the two can be hard to mix. A network protocol message might be best represented by a frozen attrs
class because so that downstream code can’t accidently change any of its values. At the same time, the data necessary
to create that class may not arrive at the same time. One way to deal with this is to create a temporary dict to store
initializer arguments as they become available:

import attr

@attr.s(frozen=True)
class Message(object):

key = attr.ib()
value = attr.ib()
ttl = attr.ib()
owner = attr.ib()

class Protocol(object):
def __init__(self, received):

self.received = received

def connectionMade(self):
self._arguments = {}
self._keys = []

def dataReceived(self, data):
type, value = parse(data)
if type == Types.STOP:

message = Message(**self._arguments)
self.received.callback(message)
self.transport.loseConnection()

elif type == Types.KEY:
self._keys.append(value)

elif type == Types.VALUE:
key = self._keys.pop(0)
self._arguments[key] = value

elif type == Types.TTL:
...

While the downstream code waits on the received Deferred benefits from Message’s mutability, the parsing code
in Protocol does not, even though it’s liable to be full of details that hide bugs.

4 Chapter 1. Why?

https://attrs.readthedocs.io

CHAPTER 2

How?

bfa works with attrs to make the builder pattern as painless as it is powerful. Imagine a network protocol Message
with even more fields, so that our program suffers from both issues that make immutability hard:

import attr

@attr.s(frozen=True)
class Message(object):

key = attr.ib()
value = attr.ib()
ttl = attr.ib()
owner = attr.ib()
address = attr.ib()
kitchen = attr.ib()
sink = attr.ib()
...

The protocol itself can use bfa.builder to incrementally construct a Message:

import bfa

class Protocol(object):
def __init__(self, received):

self.received = received

def connectionMade(self):
self._builder = bfa.builder(for_class=Message)
self._keys = []

def dataReceived(self, data):
type, value = parse(data)
if type == Types.STOP:

message = self._builder.builder()
self.received.callback(message)
self.transport.loseConnection()

elif type == Types.KEY:

5

https://attrs.readthedocs.io

bfa Documentation, Release

self._keys.append(value)
elif type == Types.VALUE:

key = self._keys.pop(0)
self._builder.key(key)

elif type == Types.TTL:
...

See bfa.builder() for the details.

6 Chapter 2. How?

CHAPTER 3

Where?

bfa is developed on GitHub.

Contributors adhere to the project’s Code of Conduct.

3.1 src

3.1.1 bfa package

Module contents

7

https://github.com/markrwilliams/bfa
https://github.com/markrwilliams/bfa/blob/master/CODE_OF_CONDUCT.md

bfa Documentation, Release

8 Chapter 3. Where?

CHAPTER 4

Indices

• genindex

• modindex

• search

9

	Why?
	Many Complex Arguments
	Immutable Classes and Incomplete Data

	How?
	Where?
	src

	Indices

